Arrays I 201

35 -~ 35 35
65 f <«—— 65 < 10
Trip-2
10 10 B —— 65 -
80 80 80
35 -~ 10
10 - 35 -~
Trip-3
65 65
80 80

During the first trip, three pairs of items are compared and interchanged whenever needed. It
should be noted that the number 80, the largest among the items, has been moved to the bottom at the
end of the first trip. This means that the element 80 (the last item in the new list) need not be consid-
ered any further. Therefore, trip-2 requires only two pairs to be compared. This time, the number 65
(the second largest value) has been moved down the list. Notice that each trip brings the smallest
value 10 up by one level.

The number of steps required in a trip is reduced by one for each trip made. The entire process will
be over when a trip contains only one step. If the list contains n elements, then the number of compari-
sons involved would be n(n—1)/2.

‘Program

#define N 10

main{)

{
int i,j,n;
float median,a[N],t;
printf("Enter the number of items\n");
scanf("%d", &n);

/*Reading items into array a */
printf("Input %d values \n",n);
for (i = 1; i <= n ; i++)

scanf("%f", &al[i]);

/*Sorting begins */
for (i =1 ; 1 <= n=1; i++)

{ /* Trip-i begins */

202 | Programming in ANSIC

for (3 =13 J <= n=i; j++)
{
if (a[d] <= a[j+1])
{ /* Interchanging values */
t = alils
alj] = a[j+1];
alj+1] = t;
}
else
continue ;
}
} /* sorting ends */
/* calculation of median */
if (n%2==20)
median = (afn/2] + a[n/2+1])/2.0 ;
else
median = a[n/2 + 1];
/* Printing */
for (i =1 ; i <=n ; j++)
printf("%f ", a[i]);
printf("\n\nMedian is %f\n", median);
}
Output
Enter the number of items
5
Input 5 values
1.111 2.222 3.333 4.444 5.555
5.555000 4.444000 3.333000 2.222000 1.111000

Median is 3.333000

Enter the number of items

6

Input 6 values

358946

9.000000 8.000000 6.000000 5.000000 4.000000 3.000000

Median is 5.500000

Fig. 7.7 Program to sort a list of numbers and to determine median

2. Calculation of Standard Deviation

In statistics, standard deviation is used to measure deviation of data from its mean. The formula for
calculating standard deviation of n items is

Arrays
$ = Jvariance

where

n

. 1 2
variance = — 2{()(i -m)
nS

and

n

m = mean = 1 X
n
1=1

Thea@oﬁﬂmlﬁncakubﬁngﬂwsmndmddewaﬁonBas&Mow&

1. Read n items.

2. Calculate sum and mean of the items.

3. Calculate variance.

4. Calculate standard deviation.

Complete program with sample output is shown in Fig. 7.8.

| 203

Program

#include <math.h>

#define MAXSIZE 100

main()

{
int i,n;
float value [MAXSIZE], deviation,

sum, sumsqr,mean,variance,stddeviation;

sum = sumsqr = n = 0 ;
printf("Input values: input -1 to end \n");
for (i=1; i< MAXSIZE ; i+t)

{
scanf("%7", &value[i]);
if (value[i] == -1)
break;
sum += valuel[i];
n += 1;
}

mean = sum/{float)n;
for (i = 1 ; i<= n; i++)
{
deviation = value[i] - mean;
sumsqr += deviation * deviation;
}
variance = sumsqr/(f]oat)n 5
stddeviation = sqrt(variance) ;
printf("\nNumber of items : %d\n",n);

204' Programming in ANSI C

printf("Mean : %f\n", mean);
printf("Standard deviation : %f\n", stddeviation);
_
Output
Input values: input -1 to end
659 27 78 12 20 33 49 -1

Number of items : 8
Mean : 36.625000
Standard deviation : 23.510303

Fig. 7.8 Program to calculate standard deviation

3. Evaluating a Test

A test consisting of 25 multiple-choice items is administered to a batch of 3 students. Correct answers
and student responses are tabulated as shown below:

ltems

1234567890123456789012345

Correct
answers

Student 1

Student 2

Student 3

The algorithm for evaluating the answers of students is as follows:
1. Read correct answers into an array.
2. Read the responses of a student and count the correct ones.
3. Repeat step-2 for each student.
4. Print the results.
A program to implement this algorithm is given in Fig. 7.9. The program uses the following arrays:

key[i] - To store correct answers of items
response[i] - To store responses of students

correct[i] - To identify items that are answered correctly.

Program
#define STUDENTS 3
#define ITEMS 25
main()

{

Arrays |2os

char key[ITEMS+1],response[ITEMS+1];
int count, i, student,n,
correct [ITEMS+1];
/*Reading of Correct answers */
printf("Input key to the items\n");
for(i=0; i < ITEMS; i++)
scanf("%c",8key[i]);
scanf("%c",&key[i]);
key[i] = '\0';
/*Evaluation begins */
for(student = 1; student <= STUDENTS ; student++)
{
/*Reading student responses and counting correct ones*/
count = 0;
printf("\n");
printf("Input responses of student-%d\n",student);
for(i=0; i < ITEMS ; i++)
scanf("%c",&response(i]);
scanf("%c",&response{i]);
response[i] = '\0';
for(i=0; i < ITEMS; i++)
correct[i] = 0;
for(i=0; i < ITEMS ; i++)
if(response[i] == key[i])
{
count = count +1 ;
correctf[i] = 1 ;
}
/* printing of results */
printf("\n");
printf("Student-%d\n", student);
printf("Score is %d out of %d\n",count, ITEMS);
printf("Response to the items below are wrong\n");
n = 0;
for(i=0; i < ITEMS ; i++)
jf(correct[i] == 0)

{
printf("%sd ",i+1);
n = n+l;
}
if(n == 0)

printf("NIL\n");
printf("\n");
} /* Go to next student */

206I Programming in ANSI C

/* Evaluation and printing ends */
}

Output
Input key to the items
abcdabcdabcdabecdabcdabeda

Input responses of student-1
abcdabcdabcdabcdabecdabeda

Student-1

Score is 25 out of 25

Response to the following items are wrong
NIL

Input responses of student-2
abcddcbaabcdabcdddddddddd

Student-2

Score is 14 out of 25 .

Response to the following items are wrong
567 817 18 19 21 22 23 25

Input responses of student-3
aaaaaaaaaaaaaaaaaaaaaaaaa

Student-3

Score is 7 out of 25

Response to the following items are wrong
234678101112 14 15 16 18 19 20 22 23 24

Fig. 7.9 Program to evaluate responses to a multiple-choice test

4. Production and Sales Analysis

A company manufactures five categories of products and the number of items manufactured and sold
are recorded product-wise every week in a month. The company reviews its production schedule at
every month-end. The review may require one or more of the following information:

(a) Value of weekly production and sales.

(b) Total value of all the products manufactured.

(¢) Total value of all the products sold.

(d) Total value of each product, manufactured and sold.
Let us represent the products manufactured and sold by two two-dimensional arrays M and S respec-
tively. Then,

Mll M12 M13 M14 M15
M=| M21 M22 M23 M24 M25
M31 M32 M33 M34 M35
M41 M42 M43 M44 M45

Arrays | 207

St1 S12 S13 S14 S15
S= | S21 S22 S23 S24 S25
S31 S32 S33 S34 S35
S41 S42 S43 S44 S45

where Mij represents the number of jth type product manufactured in ith week and Sij the number of
jth product sold in ith week. We may also represent the cost of each product by a single dimensional
array C as follows:

c=*|c1 c2 | c3|c4|C5

where Cj is the cost of jth type product.
We shall represent the value of products manufactured and sold by two value arrays, namely,
Myvalue and Svalue. Then,

Mvalue[1][j] = My x Cj
Svaluefi][j] = Sij x Cj

A program to generate the required outputs for the review meeting is shown in Fig. 7.10. The follow-
ing additional variables are used:

Mweek[i] = Value of all the products manufactured in week i.

=3 Mualuefil(j]

J=1

Sweek[i] = Value of all the products in week i.

5
=) Svalue[i][j]
J=1
Mproduct[j] = Value of jth type product manufactured during the month
4
= Muvalueli][j]

i=1

Sproduct[j] = Value of jth type product sold during the month

4
= 2 Svaluefi][j]

Mtotal = Total value of all the products manufactured during the month

4 S
=) ‘Mweek[i]= Y, Mproduct(j]

=1 . j=1
Stotal = Total value of all the products sold during the month

4 5
=) Sweek[i]= Y, Sproduct[j]
i=1

j=1

208 I Programming in ANSIC

Program
main()
{
int M[5][6],S[5][6].C[6],
Mvalue[5][6],Svalue[5][6],
Mweek[5], Sweek[5],
Mproduct[6], Sproduct[6],
Mtotal, Stotal, i,j,number;
/* Input data */
printf (" Enter products manufactured week wise \n");
printf (" M11,M12,—, M21,M22,— etc\n");
for(i=1; i<=4; i++)
for(j=1;j<=5; j++)
scanf("%d",&M[i][i]1);
printf (" Enter products sold week wise\n");
printf (" S11,S12,—, S21,S22,— etc\n");
for(i=1; i<=4; i++)
for(j=1; j<=5; j++)
scanf("%d", &S[i][i]);
printf(" Enter cost of each product\n");
for(j=1; j <=5; j++)
scanf("%d",&C[j]);
/*Value matrices of production and sales */
for(i=1; i<=4; i++)
for(j=1; j<=5; j++)
{
Mvalue[i][3] = M[i][3] * C[J1;
Svalue[i][3] = S[i1[J] * C[i);
}
/*Total value of weekly production and sales */
for(i=1; i<=4; i++)
{
Mweek[i] = 0 ;
Sweek[i] = 0 ;
for(j=1; j<=5; j++)
{
Mweek[i] += Mvalue[i]l[j];
Sweek[i] += Svalue[i][i];
}
}
/*Monthly value of product wise production and sales */
for(j=1; j<=5; j++)
{
Mproduct[j] = 0 ;
Sproduct[j] = 0 ;
for(i=1; i<=4; i++)

Arrays |209

{
Mproduct[j] += Mvalue[i][j]);
Sproduct[j] += Svalue[il[i];
}
}

/*Grand total of production and sales values */
Mtotal = Stotal = 0;
for(i=1; i<=4; i++)
{
Mtotal += Mweek[i];
Stotal += Sweek[i];
}

/***

Selection and printing of information required
***/
printf("\n\n"); ‘
printf(" Following is the list of things you can\n");
printf(" request for. Enter appropriate item number\n");
printf(" and press RETURN Key\n\n");
printf(" 1.Value matrices of production & sales\n");
printf(" 2.Total value of weekly production & sales\n");
printf(" 3.Product wise monthly value of production &");
printf(" sales\n");
printf(" 4.Grand total value of production & sales\n");
printf(" 5.Exit\n");
number = 0;
while(1)

{ /* Beginning of while loop */

printf{"\n\n ENTER YOUR CHOICE:");

scanf("%d",&number);

printf("\n");

if(number == 5)

{

printf(" GOOD BYE\n\n");
break;

}

switch(number)

{ /* Beginning of switch */

/* VALUE MATRICES ¥/
case 1:
brintf(" VALUE MATRIX OF PRODUCTION\n\n");
for(i=1; i<=4; i++)
{
printf(" Week(%d)\t",i);
for(j=1; j <=5; j++)
printf("%7d", Mvatuel[i]l[il);

210 I Programming in ANSI C

printf("\n");
}
printf("\n VALUE MATRIX OF SALES\n\n");
for(i=1; i <=4; i++)
{
printf(" Week{%d)\t",i);
for(j=1; j <=5; j++)
printf("%7d", Svalue[i][jl);
printf("\n");
}

break;
/* WEEKLY ANALYSIS */
case 2:
printf(" TOTAL WEEKLY PRODUCTION & SALES\n\n");
printf(" PRODUCTION SALES\n");
printf("~ -— \n");

for(i=1; i <=4; j++)

{
printf(" Week(%d)\t", i);
printf("%7d\t%7d\n", Mweek[i], Sweek[i]);

}

break;

/* PRODUCT WISE ANALYSIS */
case 3:
printf(" PRODUCT WISE TOTAL PRODUCTION &");
printf(" SALES\n\n");

printf(" PRODUCTION SALES\n");
printf(" —— \n");
for(j=1; j <=5; j++)

{

printf(" Product(%d)\t", j);
printf("%7d\t%7d\n" ,Mproduct[j1,Sproduct[j]);
} .
break;
/* GRAND TOTALS */
case 4:
printf(" GRAND TOTAL OF PRODUCTION & SALES\n“):
printf("\n Total production = %d\n", Mtotal);
printf(" Total sales = %d\n", Stotal);

break;
/*DEFAULT¥
default :
printf(" Wrong choice, select again\n\n");
break;

} /* End of switch */
} /* End of while loop */

printf(" Exit from the program\n\n");

} /* End of main */

Output

Enter products manufactured week wise
M11, M12, ————, M21, M22, ——--- etc
11 15 12 14 13
13 13 14 15 12
12 16 10 15 14
14 11 15 13 12

Enter products sold week wise
$11,812,—~~—, S21,S822,---- etc
10 13 9 12 11

12 10 12 14 10

11 14 10 14 12

12 10 13 11 10

Enter cost of each product

10 20 30 15 25

Following is the list of things you can
request for. Enter appropriate item number
and press RETURN key

1.Value matrices of production & sales
2.Total value of weekly production & sales

3.Product wise monthly value of production & sales

4.Grand total value of production & sales

5.Exit

ENTER YOUR CHOICE:1

VALUE MATRIX OF PRODUCTION
Week(1) 110 300 360 210
Week(2) 130 260 420 225
Week(3) 120 320 300 225
Week (4) 140 220 450 185

VALUE MATRIX OF SALES
Week (1) 100 260 270 180
Week(2) 120 200 360 210
Week (3) 110 280 300 210
Week(4) 120 200 390 165

ENTER YOUR CHOICE:2

TOTAL WEEKLY PRODUCTION & SALES

PRODUCTION SALES

(1) 1305 1085
(2) 1335 1140
Week (3) i315 1200
(4) 1305 1125

325
300
350
300

275
250
300
250

Arrays I 211

212 Programming in ANSI C

ENTER YOUR CHOICE:3
PRODUCT WISE TOTAL PRODUCTION & SALES
PRODUCTION SALES

Product(1) 500 450
Product(2) 1100 940
Product (3) 1530 1320
Product (4) 855 765
Product(5) 1275 1075

ENTER YOUR CHOICE:4

GRAND TOTAL OF PRODUCTION & SALES

5260
4550

Total production
Total sales
ENTER YOUR CHOICE:5
GOOD BYE

Exit from the program

Fig. 7.10 Program for production and sales analysis

REVIEW QUESTIONS

7.1 State whether the following statements are true or false.
(a) The type of all elements in an array must be the same.
(b) When an array is declared, C automatically initializes its elements to zero.
(c) An expression that evaluates to an integral value may be used as a subscript.
(d) Accessing an array outside its range is a compile time error.
(e) A char type variable cannot be used as a subscript in an array.
(f) An unsigned long int type can be used as a subscript in an array.
(g) In C, by default, the first subscript is zero.
(h) When initializing a multidimensional array, not specifying all its dimensions is an error.
(i) When we use expressions as a subscript, its result should be always greater than zero.
(j) InC, we can use a maximum of 4 dimensions for an array.
(k) In declaring an array, the array size can be a constant or variable or an expression.
(1) The declaration int x[2] = {1,2.3}; 1s illegal.
7.2 Fill in the blanks in the following statements.

(a) The variable used as a subscript in an array is popularly known as _ variable.
(b) An array can be initialized either at compile time or at .

(c) An array created using malloc function at run time is referred to as _ array.
(d) An array that uses more than two subscript is referred to as _array.

(e) __isthe process of arranging the elements of an array in order.

7.3 ldentify errors, if any, in each of the following array declaration statements, assuming that
ROW and COLUMN are declared as symbolic constants:
(a) int score (100);
(b) float values [10,15];

Arrays

(c) float average[ROW],[COLUMN];
(d) char name[15];
(e) int sum[J;
(f) double salary [i + ROW]
(g) Tong int number [ROW]
(h) int array x[COLUMN];
7.4 ldentify errors, if any, in each of the following initialization statements.
(a) int number[] = {0,0,0,0,0};
(b) float item[3]([2] = {0,1,2,3,4,5};
(¢) char word[] = {'A','R"', 'R', 'A', 'Y'};
(d) int m[2,4] = {(0,0,0,0)(1,1,1,1)};
(e) float result[10] = O
Assume that the arrays A and B are declared as follows:
int A[5][4];
float B[4];
Find the errors (if any) in the following program segments.
(a) for (i=1; i<=5; i++)
for(j=1; Jj<=4; j++)
ALi1[3] = 0s
(b) for (i=1; i<4; i++)
scanf("%f", B[i]);
(¢) for (i=0; i<=4; i++)
B[i] = B[i]+i;
(d) for (i=4; i>=0; i--)
for (§=0; j<4; j++)
A[i103] = B3] + 1.0;

~J
n

213

7.6 Write a for loop statement that initializes all the diagonal elements of an array to one and

others to zero as shown below. Assume 5 rows and 5 columns.

1 0 0 0 ol 0
0 1 0 0 ol 0
0 0 1 0 o0l 0
0 0 0 0 0l 1

7.7 We want to declare a two-dimensional integer type array called matrix for 3 rows and 5

columns. Which of the following declarations are correct?
(a) int maxtrix [3],[5];
(b) int matrix [5] [3];

214I Programming in ANSI C

(¢) int matrix [142] [2+3];

(d) int matrix [3,5];

(e) int matrix [3] [5];
7.8 Which of the following initialization statements are correct?

(a) char stri[4] = "GOOD";

(b) char str2[] = "C";

(¢c) char str3{5] = "Moon";

(d) char stra[] {'s*, 'u', 'N'};

(e) char str5[10] = "Sun";
7.9 What is a data structure? Why is an array called a data structure?
7.10 What is a dynamic array? How is it created? Give a typical example of use of a dynamic array.

PROGRAMMING EXERCISES

7.1 Write a program for fitting a straight line through a set of points (x;,y;), 1= 1,.....,n.
The straight line equation is
y=mx+c
and the values of m and c are given by

_n Z(xy5) — (%) (2y;)
n(2x}) - (2x;)°

1
=_— (v - X,
n(¥i - m X X;)

All summations are from 1 to n.

7.2 The daily maximum temperatures recorded in 10 cities during the month of January (for all 31
days) have been tabulated as follows:

City
Day 1 2 R T 10
T o
2
3
31

Write a program to read the table elements into a two-dimensional array temperature, and to
find the city and day corresponding to
(a) the highest temperature and
(b) the lowest temperature.

7.3 Anelection is contested by 5 candidates. The candidates are numbered 1 to 5 and the voting is
done by marking the candidate number on the ballot paper. Write a program to read the ballots

7.4

7.5

7.6

7.7

Arrays |215

and count the votes cast for each candidate using an array variable count. In case, a number
read is outside the range 1 to 5, the ballot should be considered as a ‘spoilt ballot” and the
program should also count the number of spoilt ballots.
The following set of numbers is popularly known as Pascal’s triangle.

1

—m e e —
DB W N -

If we denote rows by i and columns by j, then any element (except the boundary elements) in
the triangle is given by

Pi=Pinj1TPiyy
Write a program to calculate the elements of the Pascal triangle for 10 rows and print the

results.
The annual examination results of 100 students are tabulated as follows:

Roll No. Subject1 Subject2 Subject3

Write a program to read the data and determine the following:

(a) Total marks obtained by each student.

(b) The highest marks in each subject and the Roll No. of the student who secured it.

(c) The student who obtained the highest total marks.

Given are two one-dimensional arrays A and B which are sorted in ascending order.Write a
program to merge them into a single sorted array C that contains every item from arrays A
and B, in ascending order.

Two matrices that have the same number of rows and columns can be multiplied to produce a
third matrix. Consider the following two matrices.

216

7.8

7.9

7.10

Programming in ANSI C

by, by by,]
Bys by by,
B =
by b, |

The product of A and B is a third matrix C of size nxn where each element of C is given by the
following equation.

n
Cy= 2 abyg
k=1

Write a program that will read the values of elements of A and B and produce the product
matrix C.
Write a program that fills a five-by-five matrix as follows.

¢ Upper left triangle with +1s

o Lower right triangle with —1s

e Right to left diagonal with zeros
Display the contents of the matrix using not more than two printf statements
Selection sort is based on the following idea:
Selecting the largest array element and swapping it with the last array element leaves an
unsorted list whose size is 1 less than the size of the original list. If we repeat this step again
on the unsorted list we will have an ordered list of size 2 and an unordered list size n-2 . When
we repeat this until the size of the unsorted list becomes one, the result will be a sorted list.
Write a program to implement this algorithm.
Develop a program to implement the binary search algorithm. This technique compares the
search key value with the value of the element that is midway in a “sorted” list. Then;
(a) Ifthey match, the search is over.
(b) Ifthe search key value is less than the middle value, then the first half of the list contains

the key value.
(c) Ifthe search key value is greater than the middle value, then the second half contains the
key value.

Repeat this “divide-and-conquer” strategy until we have a match. If the list is reduced to one
non-matching element, then the list does not contain the key value.
Use the sorted list created in Exercise 7.9 or use any other sorted list.

~ Chapter

Character Arrays
and Strings

1 INTRODUCTION

A string is a sequence of characters that is treated as a single data item. We have used strings in a
number of examples in the past. Any group of characters (except double quote sign) defined between
double quotation marks is a string constant. Example:
“Man is obviously made to think.”
If we want to include a double quote in the string to be printed, then we may use it with a back

slash as shown below.
“\” Man is obviously made to think,\” said Pascal.”

For example,
printf ("\" Well Done !"\");
will output the string
“ Well Done !”
while the statement
printf(" Well Done !");
will output the string
Well Done !

Character strings are often used to build meaningful and readable programs. The common opera-
tions performed on character strings include:
¢ Reading and writing strings
e Combining strings together
e Copying one string to another

218} Programming in ANSIC

e Comparing strings for equality
e Extracting a portion of a string
In this chapter we shall discuss these operations in detail and examine library functions that imple-
ment them.

52 DECLARING AND INJTIALIZING STRING VARIABLES

C does not support strings as a data type. However, it allows us to represent strings as character
arrays. In C, therefore, a string variable is any valid C variable name and is always declared as an
- array of characters. The general form of declaration of a string variable is

ot e PSRRI SR
Coairing nding s |

The size determines the number of characters in the string_ name. Some examples are:
char city[10];
char name[30];

When the compiler assigns a character string to a character array. it automatically supplies a nuf/
character (“\0 *) at the end of the string. Therefore, the size should be equal to the maximum number
of characters in the string p/us one.

Like numeric arrays, character arrays may be initialized when they are declared. C permits a
character array to be initialized in either of the following two forms:

char city [9] = " NEW YORK ";
Chal“ City [9]={'N', |E| . lwl ’l l, IYI’ lol . |R',‘K', |\0l};

The reason that city had to be 9 elements long is that the string NEW YORK contains 8 characters
and one element space 1s provided for the null terminator. Note that when we initialize a character
array by listing its elements, we must supply explicitly the null terminator.

C also permits us to initialize a character array without specitying the number of elements. In such
cases, the size of the array will be determined automatically, based on the number of elements initial-
ized. For example, the statement

char string [1 = {'G','0','0','D",'\0"'};
defines the array string as a five element array.
We can also declare the size much larger than the string size in the initializer. That is, the state-
ment.

char str[10] = "GOOD";

is permitted. In this case, the computer creates a character array of size 10, places the value “GOOD™
in it, terminates with the null character, and initializes all other elements to NULL. The storage will
look like:

e

\0 1 \0 | \0

Character Arrays and Strings |219

However, the following declaration is illegal.
char str2[3] = "GOOD";
This will result in a compile time error. Also note that we cannot separate the initialization from
declaration. That is, ‘
char str3[5];
str3 = "GOOD";
is not allowed. Similarly,
char s1[4] = "abc";
char s2[4];
s2 = sl; /* Error */

is not allowed. An array name cannot be used as the left operand of an assignment operator.

9 Terminating Null Character)

You must be wondering, “why do we need a terminating null character?” As we

know, a string is not a data type in C, but it is considered a data structure stored

in an array. The string is a variable-length structure and is stored in a fixed-length

array. The array size is not always the size of the string and most often it is much

larger than the string stored in it. Therefore, the last element of the array need
not represent the end of the string. We need some way to determine the end of

G the string data and the null character serves as the “end-of-string” marker. J

8.3 READING STRINGS FROM TERMINAL

Usingscanf Function
The familiar input function scanf can be used with %s format specification to read in a string of
characters. Example:

char address[10]
scanf("%s", address);

The problem with the scanf function is that it terminates its input on the first white space it finds.
(A white space includes blanks, tabs, carriage returns, form feeds, and new lines.) Therefore, if the
following line of text is typed in at the terminal,

NEW YORK
then only the string “NEW™ will be read into the array address, since the blank space after the word
‘NEW" will terminate the string reading.

The scanf function automatically terminates the string that is read with a null character and there-
fore the character array should be large enough to hold the input string plus the null character. Note
that unlike previous scanf calls, in the case of character arrays, the ampersand (&) is not required
before the variable name.

220| Programming in ANSI C

The address array is created in the memory as shown below:

N E| W/|\0 ?0? ? ? ? ?

0 1 2 3 4 5 6 7 8 9
Note that the unused locations are filled with garbage.
If we want to read the entire line “NEW YORK?”, then we may use two character arrays of appro-
priate sizes. That is,

char adrl[5], adr2[5];
scanf("%s %s", adrl, adr2);
with the line of text
NEW YORK
will assign the string “NEW” to adr1 and “YORK" to adr2.

Example 8.1] Write a program to read a series of words from a terminal using scanf

function.
The program shown in Fig. 8.1 reads four words and displays them on the screen.
Note that the string 'Oxford Road’ is treated as two words while the string ‘Oxford-
Rocad’ as one word.

Program
main()
{
char word1[40], word2[40], word3[40], word4[40];

printf("Enter text : \n");
scanf("%s %s", wordl, word?2);
scanf("%s", word3);
scanf("%s", word4);

printf("\n");

printf("wordl = %s\nword2 = %s\n", wordl, word?2);
printf("word3 = %s\nword4 = %s\n", word3, word4);

}

OQutput

Enter text :

Oxford Road, London M17ED

wordl = Oxford

word2 = Road,

word3 = London

word4 = MI17ED

Character Arrays and Strings I 221

Enter text :
Oxford-Road, London-M17ED United Kingdom

wordl = Oxford-Road
word2 = London-M17ED
word3 = United
word4 = Kingdom

Fig. 8.1 Reading a series of words using scanf function
We can also specify the field width using the form %ws in the scanf statement for reading a specified
number of characters from the input string . Example:
scanf("%ws", name);

Here, two things may happen.
1. The width w is equal to or greater than the number of characters typed in. The entire string
will be stored in the string variable.
2. The width w is less than the number of characters in the string. The excess characters will be
truncated and left unread.
Consider the following statements:

char name[10];
scanf("%5s", name);

The input string RAM will be stored as:

R A M|\ ?1? ? ? ? ?

0 1 2 3 4 5 6 7 8 9
The input string KRISHNA will be stored as:

K R {1 S H|\0 2 ? ? ?

0 1 2 3 4 5 6 7 8 9
Reading o Line of Text

We have seen just now that scanf with %s or %ws can read only strings without whitespaces. That is,
they cannot be used for reading a text containing more than one word. However, C supports a format
specification known as the edit set conversion code %l[. .] that can be used to read a line containing
a variety of characters, including whitespaces. Recall that we have used this conversion code in
Chapter 4. For example,
the program segment

char line [80];

scanf("%[*\n]", line);

printf("%s", line);
will read a line of input from the keyboard and display the same on the screen. We would very rarely
use this method, as C supports an intrinsic string function to do this job. This is discussed in the next
section.

222 | Programming in ANSI C
Using getchar and gers Funetlions

We have discussed in Chapter 4 as to how to read a single character from the terminal, using the
function getchar. We can use this function repeatedly to read successive single characters from the
input and place them into a character array. Thus, an entire line of text can be read and stored in an
array. The reading is terminated when the newline character (‘\n’) is entered and the null character is
then inserted at the end of the string. The getchar function call takes the form:

char ch;
ch = getchar();

Note that the getchar function has no parameters.
{?xample 8.2 Write a program to read a line of text containing a series of words from
R the terminal.
The program shown in Fig. 8.2 can read a line of text (up to a maximum of 80 characters) into the
string line using getchar function. Every time a character is read, it is assigned to its location in the
string line and then tested for newline character. When the newline character is read (signalling the
end of line), the reading loop is terminated and the newline character is replaced by the null character
to indicate the end of character string.

When the loop is exited, the value of the index ¢ is one number higher than the last character
position in the string (since it has been incremented after assigning the new character to the string).
Therefore the index value ¢-1 gives the position where the null character is to be stored.

Program
#include <stdio.h>
main()
{
char 1ine[81], character;
int c;
c = 0;
printf("Enter text. Press <Return> at end\n");
do
{
character = getchar();
Tine[c] = character;

Ct++;
}
while(character != '\n');
c=¢c¢-1;

Tine[c] = '\0';
printf("\n%s\n", Tine);
}
Qutput
Enter text. Press <Return> at end
Programming in C is interesting.
Programming in C is interesting.

Character Arrays and Strings]| 223

Enter text. Press <Return> at end
National Centre for Expert Systems, Hyderabad.
National Centre for Expert Systems, Hyderabad.

Fig. 8.2 Program to read a line of text from terminal

Another and more convenient method of reading a string of text containing whitespaces is to use the
library function gets available in the <stdio.h> header file. This is a simple function with one string
parameter and called as under:

gets (str);

str is a string variable declared properly. It reads characters into str from the keyboard until a new-
line character is encountered and then appends a null character to the string. Unlike scanf, it does not
skip whitespaces. For example the code segment

char line [80];

gets (line);

printf ("%s", line);
reads a line of text from the keyboard and displays it on the screen. The last two statements may be
combined as follows:

printf("%s", gets(line));

(Be careful not to input more character that can be stored in the string variable used. Since C does
not check array-bounds, it may cause problems.)
C does not provide operators that work on strings directly. For instance we cannot assign one

string to another directly. For example, the assignment statements.

string = "ABC";

stringl = string2;
are not valid. If we really want to copy the characters in string2 into stringl, we may do so on a
character-by-character basis.

Example 8.3 Write a program to copy one string info another and count the

number of characters copied.

The program is shown in Fig. 8.3. We use a for loop to copy the characters contained inside string2
into the stringl. The loop is terminated when the nul/ character is reached. Note that we are again
assigning a null character to the stringl.

Program

main()

{
char stringl[80], string2[80];
int i;
printf("Enter a string \n");
printf("2");
scanf("%s", string2);
for(i=0 ; string2[i] '= '\0'; i++)

stringl[i] = string2[i]l;

224| Programming in ANSI C

stringl[i] = '\0';
printf("\n");
printf("%s\n", stringl);
printf("Number of characters = %d\n", i);
}
Output
Enter a string
?Manchester

Manchester

Number of characters 10

Enter a string
?Westminster

Westminster
Number of characters

11

Fig. 8.3 Copying one string into another

3.4 WRITING STRINGS TO SCREEN
Using printf Function

We have used extensively the printf function with %s format to print strings 1o the screen. The
format %s can be used to display an array of characters that is terminated by the null character. For
example, the statement

printf("%s", name);

can be used to display the entire contents of the array name.
We can also specify the precision with which the array is displayed. For instance, the specification

%10.4

indicates that the first four characters are to be printed in a field width of 10 columns.
However, if we include the minus sign in the specification (e.g., %-10.4s). the string will be printed
left-justified. The Example 8.4 illustrates the effect of various %s specifications.

Example 8.4) Write a program to store the string “United Kingdom*” in the array
country and display the string under various format specifications.

The program and its output are shown in Fig. 8.4. The output illustrates the following features of the
%s specifications.
1. When the field width is less than the length of the string, the entire string is printed.
2. The integer value on the right side of the decimal point specifies the number of characters to be
printed.
3. When the number of characters to be printed is specified as zero, nothing is printed.

Character Arrays and Strings

4. The minus sign in the specification causes the string to be printed left-justified.
5. The specification % .ns prints the first n characters of the string.

225

{

Program
main()

United Kingdom
United Kingdom

char country[15] = "United Kingdom";
printf("\n\n");
printf("*123456789012345*\n");
printf(" ————~ \n");
printf("%15s\n", country);

printf("%5s\n", country);
printf("%15.6s\n", country);
printf("%-15.6s\n", country);
printf("%15.0s\n", country);
printf("%.3s\n", country);
printf("%s\n", country);
printf("———-- \n");

}

Output
123456789012345

United

United

Uni
United Kingdom

Fig. 8.4 Writing strings using %s format

The printf on UNIX supports another nice feature that allows for variable field width or precision.

For instance

printf("%*.*s\n", w, d, string);
prints the first d characters of the string in the field width of w.

This feature comes in handy for printing a sequence of characters. Example 8.5 illustrates this.

Example 8.5; Write a program using for loop to print the following output.

CProgramming

226| Programming in ANSI C

CProgramming

The outputs of the program in Fig. 8.5, for variable specifications %12.*s, %.*s, and %*.1s are
shown in Fig. 8.6, which further illustrates the variable field width and the precision specifications.

Program
main()
{
int ¢, d;
char string[] = "CProgramming";
printf("\n\n");
printf('————eee o~ \n")s
for(¢ =0 ; c <= 11 ; c++)
{
d=c+
printf("
}
printf("|--—mmm e [\n");
for(c =11 ; ¢ >=0 3 c——)

o
=
-
>
+ O
—
— +

%-12.*s|\n", d, string);

Output

CP

CPr

CPro

CProg
CProgr
CProgra
CProgram
CProgramm
CProgrammi
CProgrammin
CProgramming

CProgramming
CProgrammin
CProgrammi
CProgramm
CProgram
CProgra
CProgr
CProg

CPro

CPr

cP

C

Character Arrays and Strings |227

Fig. 8.5 [lllustration of variable field specifications by printing sequences of characters

C CT C]
cp CP| o
CPr CPr| ol
CPro CPro} C|
CProg CPY‘Ogi CI
CProgr CProgr| Ci
CProgra CProgra] Cl
CProgram CProgram| C|
CProgramm CProgramm| C|
CProgrammi CProgrammi | C|
CProgrammin CProgrammin | C|
CProgramming CProgramming | C|
CProgramming CProgramming| C]
CProgrammin CProgrammin| C|
CProgrammi CProgrammi | c|
(Programm CProgramm| C|
CProgram CProgram| C|
CProgra CProgra| c|
CProgr CProgr| c|
CProg CProg| C|
CPro CPro| q
CPr CPr| c|
cp CP| C|
C Cl o
(@) "l *s (b) %%.*s {c) %*.1s

Fig. 8.6 Further illustrations of variable specifications

228| Programming in ANSIC
Using putchar and puts Functions

Like getchar, C supports another character handling function putchar to output the values of charac-
ter variables. It takes the following form:

char ch = 'A';
putchar (ch);

The function putchar requires one parameter. This statement is equivalent to:
printf("%c", ch);

We have used putchar function in Chapter 4 to write characters to the screen. We can use this
function repeatedly to output a string of characters stored in an array using a loop: Example:

char name[6] = "PARIS"

for (i=0, i<5; i++)

putchar(name[i];

putchar('\n');
Another and more convenient way of printing string values is to use the function puts declared in the
header file <stdio.h>. This is a one parameter function and invoked as under:

puts (str);

where str is a string variable containing a string value. This prints the value of the string variable str
and then moves the cursor to the beginning of the next line on the screen. For example, the program
segment

char line [80];

gets (line);

puts (line);
reads a line of text from the keyboard and displays it on the screen. Note that the syntax is very simple
compared to using the scanf and printf statements.

55 ARITHMETIC OPERATIONS ON CHARACTERS

C allows us to manipulate characters the same way we do with numbers. Whenever a character
constant or character variable is used in an expression, it is automatically converted into an integer
value by the system. The integer value depends on the local character set of the system.
To write a character in its integer representation, we may write it as an integer. For example, if the
machine uses the ASCII representation, then,
x = 'a';
printf("%d\n",x);
will display the number 97 on the screen.
It is also possible to perform arithmetic operations on the character constants and variables. For
example,

x = ‘z'-1;

is a valid statement. In ASCIL, the value of ‘2’ is 122 and therefore, the statement will assign the
value 121 to the variable x.

Character Arrays and Strings |229

We may also use character constants in relational expressions. For example, the expression
ch >= 'A' &8 ch <= '7'
would test whether the character contained in the variable ch is an upper-case letter.
We can convert a character digit to its equivalent integer value using the following relationship:
x = character - '0';

where x is defined as an integer variable and character contains the character digit. For example. let
us assume that the character contains the digit *7°,

Then,
x = ASCII value of 7" - ASCIH value of ‘0’
=55-48
=17

The C library supports a function that converts a string of digits into their integer values. The function
takes the form

Xomoatonstring

X is an integer variable and string is a character array containing a string of digits. Consider the
following segment ot'a program:

number = "1988";

year = atoi(number);
number is a string variable which is assigned the string constant **1988”. The function atoi converts
the string 1988 (contained in number) to its numeric equivalent 1988 and assigns it to the integer
variable year. String conversion functions are stored in the header file <std.lib.h>.

Example 8.6] Write a program which would print the alphabet set ato zand A to Z
in decimal and character form.

The program is shown in Fig. 8.7. In ASCII character set, the decimal numbers 65 to 90 represent
uppercase alphabets and 97 to 122 represent lowercase alphabets. The values from 91 to 96 are
excluded using an if statement in the for loop.

Program
main()

{

char c;

printf("\n\n");

for(c =65 ; c<=122;c=c+1)
{

if(¢ >90 88 ¢ < 97)
continue;
printf("|%4d - %c ", c, c);

printf("|\n");
Output

| 65 - A | 66 -B]67-C|68-D|69-E|70-F
|70 -G [72 -H [73-11]78-31]75-K]76-1L

230 I Programming in ANSIC

{113 - q| 114 - r| 115 - s| 116 - t
|119 - w| 120 - x| 121 - y| 122 - z

| 77 -M| 78 - N| 79 -0| 8 -P| 81 -0/ 82-R

| 83 -S| 84 -7T) 85 -Ul 8 - V| 87 - W 8 -X

| 89 ~Y| 90 -2| 97 -a| 98-b| 99 - c| 100 - d

|101 - e| 102 - f| 103 - g| 104 - h| 105 - i| 106 - |

1107 - k| 108 - 1] 109 - m| 110 - n] 111 - o] 112 - p
| 117 - u| 118 - v
1

Fig. 8.7 Printing of the alphabet set in decimal and character form

G PUTTIRG STRINGS TOGHETHER

Just as we cannot assign one string to another directly, we cannot join two strings together by the
simple arithmetic addition. That is, the statements such as

string3 = stringl + string2;

string2 = stringl + "hello";
are not valid. The characters from string1 and string2 should be copied into the string3 one after the
other. The size of the array string3 should be large enough to hold the total characters.

The process of combining two strings together is called concatenation. Example X.7 illustrates the

concatenation of three strings.

xqmple 8.7 The names of employees of an organization are stored in three arrays,
"""""""" namely first_name, second_name, and last_name. Write a program to
concatenate the three parts into one string to be called name.
The program is given in Fig. &.8. Three for loops are used to copy the three strings. In the first foop.
the characters contained in the first_name are copied into the variable name until the nu/l character
is reached. The null character is not copied; instead it is replaced by a space by the assignment
statement

name[i] = ;
Similarly. the second_name is copied into name, starting from the column just after the space cre-
ated by the above statement. This is achieved by the assignment statement

name[i+j+1] = second name[j];

If first_name contains 4 characters, then the value of i at this point will be 4 and therefore the first
character from second_name will be placed in the fifth cell of name. Note that we have stored a
space in the fourth cell,
In the same way, the statement
name[i+j+k+2] = last_name[k];

is uscd to copy the characters from last_name into the proper locations of name.
At the end, we place a null character to terminate the concatenated string name. In this example. itis
important to note the use of the expressions i+j+1 and i+j+k+2.

Character Arrays and Strings |231

Program

main()

{
int i, j, k ;
char first name[10] = {"VISWANATH"} ;
char second name[10] = {“PRATAP"} ;
char last name[10] = {"SINGH"} ;
char name[30] ;

/* Copy first name into name */
for(i = 0 ; first name[i] != '\0' ; i++)

name[i] = first name[i] ;
/* End first name with a space */

namef[i] = ' ' ;
/* Copy second name into name */
for(j = 0 ; second name[j] != ‘\0' ; j++)

name(i+j+1] = second name[j] ;
/* End second _name with a space */
namefi+j+1] = ' ' ;
/* Copy last _name into name */
for(k = 0 ; last _name[k] != '\0'; k++)
name[i+j+k+2] = last name[k] ;
/* End name with a null character */
name[i+j+k+2] = '\0' ;
printf("\n\n") ;
printf("%s\n", name) ;
}
Output
VISWANATH PRATAP SINGH

Fig. 8.8 Concatenation of strings

ARIEOW OF TWiE 5VRINGS

(nweagMH,Ckkwsnotpennhtheconmaﬁsonofnwosningsdhecﬂy.Thaﬁsjhesuﬂmnenmsuchas
if(namel == name2)
if(name == "ABC")

are not permitted. It is therefore necessary to compare the two strings 1o be tested. character by

character. The comparison is done until there is a mismatch or one of the strings terminates into a null

duwamen\vhmhcvcroccunsﬁrﬁ.ThetbﬂoudngsegnmntofuprognnniHusUaksthm.

i=0;

while(strl[i] == str2[i] && strl[i] != '\0'

8& str2[i] = '\0")

=i+l
if (strifi] == '\0' && str2[i] == '\0')
printf{"strings are egual\n");
else

printf("strings are not equal\n");

232 Programming in ANSI C

2.8 STRING-HANDELANG FVUMNO TONS
Fortunately, the C library supports a large number of string-handling functions that can be used to
carry out many of the string manipulations discussed so far. Following are the most commonly used
string-handling functions.

Function Action

strcat() concatenates two strings
stremp() compares two strings

strepy() copies one string over another
strlen() finds the length of a string

We shall discuss briefly how each of these functions can be used in the processing of strings.

streat(y Fuanotion

The strecat function joins two strings together. It takes the following form:
stvont{etringl, atrine)

string1 and string2 are character arrays. When the function streat is executed, string2 is appended
to stringl. It does so by removing the null character at the end of stringl and placing string2 from
there. The string at string2 remains unchanged. For example, consider the following three strings:

o 1 2 3 4 5 6 7 8 9 o 1

E il

0
Pat3= | B | A | D w0 |

Execution of the statement

stfcat(partl, part2);
will result in:

< |o
m
Py
<
(9]
Oﬁ)
@]
o @
1)
L

Part 1= |

0 1 2 3 4 5
Pan2=(G oioio!\o

>

while the statement

Character Arrays and Strings |233

strcat(part 1, part 3);
will result in:

0 1 2 3 4

5
Pati= 'V | E | R| Y| B A| D0, | |

0O 1 2 3 4 5 &
panngs A D 0 }

We must make sure that the size of string1 (to which string2 is appended) is large enough to accom-
modate the final string.
streat function may also append a string constant to a string variable. The following is valid:

strcat(partl,"GOOD");
C permits nesting of streat functions. For example, the statement
strcat(strcat(stringl,string2), string3);

is allowed and concatenates all the three strings together. The resultant string is stored in stringl.

STRCMP() FUNCTION

The stremp function compares two strings identified by the arguments and has a value 0 if they are
equal. If they are not, it has the numeric difference between the first nonmatching characters in the
strings. It takes the form:

strompistringl, string?);

stringl and string2 may be string variables or string constants. Examples are:

strcmp(namel, name?2);

strcmp(namel, "John");

strcmp("Rom", "Ram");
Our major concern is to determine whether the strings are equal; if not, which is a1p11abet1callv
above. The value of the mismatch is rarely important. For example. the statement

strcmp("their", “"there");

will return a value of =9 which is the numeric difference between ASCII “i” and ASCII “r””. That 18,
“I" minus “r"" in ASCII code is -9. If the value is negative, stringl is alphabetlcally above string2.

strepy() Function
The strepy function works almost like a string-assignment operator. It takes the form
strepysinngl. striae?);

and assigns the contents of string2 to stringl. string2 may be a character array variable or a string
constant. For example, the statement

234' Programming in ANSI C

strepy(city, "DELHI");
will assign the string “DELHI to the string variable city. Similarly. the statement
strepy (cityl, city?);

will assign the contents of the string variable ¢ity2 to the string variable cityl. The size of the array
cityl should be large enough to receive the contents of city2.

sirienl pEnncison
This function counts and returns the number ot characters in a string. It takes the form

el

Where n is an integer variable. which receives the value of the length of the string. The argument
may be a string constant. The counting ends at the first null character.

| Example 8.?] s1, s2, and s3 are three string variables. Write a program fo read two

T string constants info s and s2 and compare whether they are equal
or not. If they are not, join them together. Then copy the contents of
s] to the variable s3. At the end, the program should print the con-
tents of all the three variables and their lengths.

The program is shown in Fig. 8.9. During the first run. the input strings are “New™ and “York™
These strings are compared by the statement
x = stremp(sl, s2);
Since they are not equal. they are joined together and copied nto 83 using the statement
strepy(s3, sl);
The program outputs all the three strings with their lengths.
During the second run. the two strings s1 and s2 are equal, and therefore. they are not joined

wr

together. In this case all the three strings contain the same string constant London™.

Program
#include <string.h>
main()
{ char s1[20], s2[20], s3[20];
int x, 11, 12, 13;
printf(“\n\nEnter two string constants \n");
printf("2");
scanf("%s %s", si, s2);
/* comparing sl and s2 */
x = stremp(sl, s2);
if(x t= 0)
{ printf("\n\nStrings are not equal \n");
strcat(sl, s2); /* joining sl and s2 */
}
else
printf("\n\nStrings are egual \n");

Character Arrays and Strings |235

/*copying sl to s3
strepy(s3, sl1);
/*Finding length of strings */
11 = strien(sl);
12 strien(s2);
13 = strien(s3);
/*output */
printf("\nsl = %s\t length = %d characters\n", sl, 11};
printf("s2 = %s\t length = %d characters\n", s2, 12);
printf("s3 = %s\t length = %d characters\n", s3, 13);
}
OQutput
Enter twe string constants
? New York

Strings are not equal
sl = NewYork length
s2 = York Tength
s3 = NewYork Tlength

i

i

i

7 characters
4 characters
7 characters

]
n

Enter two string constants
? London London
Strings are equal

s1 =-Londen length = 6 characters
s2 = lLondon length = 6 characters
s3 London length = 6 characters

"

I
"

D

Fig. 8.9 llusiration of string handlhing functions

{iher Binng Yunasiions

The header file <string.h> contains many more string manipulation functions. They might be useful
in certain situations.
strncpy

In addition to the tunction strepy that copies one string to another, we have another function strnepy
that copies only the left-most n characters of the source string to the target string variable. This is a
three-parameter tunction and is invoked as follows:

strncpy(sl, s2, 5);
This statement copies the first 5 characters of the source string s2 into the target string s1. Since the
first 5 characters imay not include the terminating null character, we have to place it explicitly in the
6th position of 2 as shown below:

s1l[6] ='\0';

Now, the string s1 contains a proper string.

236 | Programming in ANSIC

strnemp
A variation of the function stremp is the function strnemp. This function has three parameters as
illustrated in the function call below:

strncmp (s1, s2, n);
this compares the left-most n characters of s1 to s2 and returns.
(a) 0 ifthey are equal,
(b) negative number, if s1 sub-string is less than s2, and
(c) positive number, otherwise.
strncat ' _
This is another concatenation function that takes three parameters as shown below:
strncat (sl, s2, n);

This call will concatenate the left-most n characters of's2 to the end of s1. Example:

1B AL AW, o

s2:'6lu| R U| s A?M!Yi\o}

After strncat (s, s2, 4); execution:

S1: | B A L] A G| U | R U \o E

strstr
[t is a two-parameter function that can be used to locate a sub-string in a string. This takes the forms:
strstr (sl, s2);
strstr (s1, "ABC");
The function strstr searches the string s1 to see whether the string s2 is contained in s1. If yes, the
function returns the position of the first occurrence of the sub-string. Otherwise, it returns a NULL
pointer. Example.
if (strstr (sl, s2) == NULL)
printf("substring is not found");
else
printf("s2 is a substring of sl");
We also have functions to determine the existence of a character in a string. The function call

strchr(sl, 'm');
will locate the first occurrence of the character ‘m’ and the call
strrchr(sl, 'm');

will locate the last occurrence of the character ‘m’ in the string s1.

Character Arrays and Strings |237

®

Warnings

)

¢

When allocating space for a string during declaration, remember to count the
terminating null character.

When creating an array to hold a copy of a string variable of unknown size,
we can compute the size required using the expression

strlen (stringname) +1.

When copying or concatenating one string to another, we must ensure that
the target (destination) string has enough space to hold the incoming
characters. Remember that no error message will be available even if this
condition is not satisfied. The copying may overwrite the memory and the
program mavy fail in an unpredictable way.

When we use stracpy to copy a specific number of characters from a source
string, we must ensure to append the null character to the target string, in
case the number of characters is less than or equal to the source string.

J

8.9 TARLE OF STRINGS

We often use lists of character strings, such as a list of the names of students in a class, list of the
names of employees in an organization, list of places, etc. A list of names can be treated as a table of
strings and a two-dimensional character array can be used to store the entire list. For example, a
character array student|[30][15] may be used to store a list of 30 names, each of length not more than
15 characters. Shown below is a table of five cities:

Cihlain i dl ilgiajrih]
FUR L O U S S . i
Mia d/r a|s
T ? :

Alh mi eidl/ajbl|a d:

1 B R R i
H dje|r a:bjajd
B|o mibla |y

This table can be conveniently stored in a character array city by using the following declaration:

char city[] []

{
"Chandigarh",
"Madras",
"Ahmedabad",
"Hyderabad",
"Bombay"

} s

238| Programming in ANSI C

To access the nume of the ith city in the list, we write

city[i-1]
and therefore city[0] denotes “Chandigarh”, city[1] denotes “Madras™ and so on. This shows that
once an array is declared as two-dimensional, it can be used like a one-dimensional array in further
manipulations. That is, the table can be treated as a column of strings.

{"’E{aabi‘é‘é.‘i] Write a program that would sort @ list of names in aiphabetical order,

U —

A program to sort the hst of strings in alphabetical order is given in Fig. 8.10. It employs the method
of’bubble sorting described in Case Study 1 in the previous chapter.

Program

#define ITEMS 5

#define MAXCHAR 20

main()

{
char string[ITEMS] [MAXCHAR], dummy[MAXCHAR];
int i =0, j = 0;
/* Reading the list */
printf ("Enter names of %d items \n ",ITEMS);
while (i < ITEMS)

scanf ("%s", string[i++]);

/* Sorting begins */
for (i=1; i < ITEMS; i++) /* Outer loop begins */
{

for (j=1; j <= ITEMS-i ; j++) /*Inner loop begins*/
{
if (strcmp (string[j-1], string[j]) > 0)
{ /* Exchange of contents */
strcpy (dummy, string[j-1]);
strcpy (string[j-11, string[jl);
strcpy (string[j], dummy);
}
} /* Inner loop ends */
} /* Outer loop ends */
/* Sorting completed */
printf ("\nAlphabetical list \n\n");
for (i=0; i < ITEMS ; i++)
printf ("%s", string[i]);
}

OQutput
Enter names of 5 items
London Manchester Delhi Paris Moscow

Alphabetical list

Delhi
London
Manchester
Moscow
Paris

Fig. 8.10 Sorung of sirings in alphabetical order

Character Arrays and Strings |239

Note that a two-dimensional array 1s used to store the list of strings. Each string is read using a scanf
function with %s format. Remember. if any string contains a white space. then the part o' the string
after the white space will be treated as another item in the list by the scanf. In such cases. we should
read the entire line as a string using a suitable algorithm. For example. we can use gets function to
read a line of text containing a series of words. We may also use puts function in place of scanf for
output.

f UL HER FLATURLS OF STRINGS

Other aspects of strings we have not discussed in this chapter include:
e Manipulating strings using pointers
o Using string as function parameters
e Declaring and defining strings as members of structures.
These topics will be dealt with later when we discuss functions, structures and pointers.

Just Remember

#3 Character constants are enclosed in single quotes and string constants are en-
closed in double quotes.

7y Allocate sufficient space in a character array to hold the null character at the end.

£: Avoid processing single characters as strings.

43 Using the address operator & with a string variable in the scanf tunction call is
an error.

#5 Itis a compile time error to assign a string to a character variable.

£y Using a string variable name on the left of the assignment operator is illegal.

When accessing individual characters in a string variable, it is logical error to

access outside the array bounds.

£ Strings cannot be manipulated with operators. Use string functions.

#5 Do not use string functions on an array char type that 1s not terminated with the
null character.

Z3 Do not forget to append the null character to the target string when the number of
characters copied is less than or equal to the source string.

Z2 Be aware the return values when using the functions stremp and strnemp for
comparing strings.

43 When using string functions for copying and concatenating strings, make sure
that the target string has enough space to store the resulting string. Otherwise
memory overwriting may occur.

#

#3 The header file <stdio.h> is required when using standard 1/O functions.

#3 The header file <ctype.h> is required when using character handling functions.
#5 The header file <stdlib.h> is required when using general utility functions

#3 The header file <string.h> is required when using string manipulation functions.

240| Programming in ANSI C
CASE §HUDMES
1. Counting Words in a Text

One of the practical applications of string manipulations is counting the words in a text. We assume
that a word is a sequence of any characters, except escape characters and blanks. and that two words
are separated by one blank character. The algorithm for counting words is as follows:
1. Read a line of text.
2. Beginning from the first character in the line. look for a blank. If a blank is found, increment
words by 1.
3. Contmue steps 1 and 2 until the last line is completed
The implementation of this algorithm is shown in Fig. 8.11. The first while loop will be executed
once for each line of text. The end of text is indicated by pressing the ‘Return’ key an extra time after
the entire text has been entered. The extra ‘Return’ key causes a newline character as input to the last
line and as a result, the last line contains only the null character.
The program checks for this special line using the test
if (line[0] == "\0")
andﬂkheﬁrﬁ(andonbﬁheﬁrﬂ)chmacwrnnhelhwisanuHchmacwrjhencounﬂngBtmﬂﬁnawd.
Note the difference between a null character and a blank character.

Program
#include <stdio.h>
main()
{
char line[81], ctr;
int i,c,
end = 0,
characters = 0,
words = 0,
lines = 03

printf("KEY IN THE TEXT.\n");
printf("GIVE ONE SPACE AFTER EACH WORD.\n");
printf("WHEN COMPLETED, PRESS "RETURN' .\n\n");

while(end == 0)

{
/* Reading a line of text */
c = 0;
while((ctr=getchar()) != '\n')

Tine[c++] = ctr;
line[c] = '\0';
/* counting the words in a line */
if(1ine[0] == '\0')
break ;
else

{

words++;

Character Arrays and Strings

for(i=0; line[i] != '\0';i++)
if(line[i] == * " H Tine[i] == "\t')
words++;

}

/* counting lines and characters */

Tines = lines +1;

characters = characters + strien(line);
}
printf ("\n"});
printf("Number of lines = %d\n", lines);
printf("Nunber of words = %d\n", words)
printf("Number of characters = %d\n", c

}

H
haracters);

Output

KEY IN THE TEXT.
GIVE ONE SPACE AFTER EACH WORD.
WHEN COMPLETED, PRESS 'RETURN'.

Admiration is a very short-lived passion.
Admiration involves a glorious obliquity of vision.
Always we like those who admire us but we do not
like those whom we admire.

Fools admire, but men of sense approve.

1t

Number of lines 5
Number of words = 36
Number of characters = 205

241

Fig. 8.11 Counting of characters, words and lines in a text

The program also counts the number of lines read and the total number of characters in the text.
Remember, the last line containing the null string is not counted.
After the first while loop is exited, the program prints the results of counting.

2. Processing of a Customer List

Telephone numbers of important customers are recorded as follows:

Full name Telephone number
Joseph Louis Lagrange 869245
Jean Robert Argand 900823

Carl

Freidrich Gauss 806788

Itis desired to prepare a revised alphabetical list with surname (last name) first, followed by a comma
and the initials of the first and middle names. For example,

Argand.,J.R

242 I Programming in ANSIC

We create a table of strings, each row representing the details of one person. such as first name,
middle_name, last_name, and telephone number. The columns are interchanged as required and the
list is sorted on the last_name. Figure 8.12 shows a program to achieve this.

Program
#define CUSTOMERS 10

main()
{
char first name[20][10], second_name[20][10],
surname[20][10], name[20] [20],
telephone[20][10], dummy[20];

int 1,3

printf("Input names and telephone numbers \n");
printf("?");
for(i=0; i < CUSTOMERS ; i++)
{
scanf("%s %s %s %s", first name[i],
second name[i], surname[i], telephone{i]);

/* converting full name to surname with initials */

strcpy(name[i], surname[i]);
strcat(namel[i}, ",");
dummy [0] = first name[i][0];
dummy[1] = '\0';
strcat(name[i], dummy):
strcat(nameli], ".");
dummy [0] = second name[i][0];
dummy[1] = '\O';
strcat(name{i], dummy);

}

/* Alphabetical ordering of surnames */

for(i=1; i <= CUSTOMERS-1; i++)
for(j=1; j <= CUSTOMERS-i; j++)
if(stremp (name[j-1], name[j]) > 0)
{

/

/* Swaping names */

strcpy (dummy, name[j-1]);
strcpy (name[j-11, namelj]);
strepy(name[j], dummy);

Output

CUSTOMERS LIST IN ALPHABETICAL ORDER

Character Arrays and Strings | 243

/* Swaping telephone numbers */
strcpy (dummy, telephonel[j-11);
strcpy(telephone[j-1],telephonelj]l});
strcpy(telephone[j], dummy);
1
/* printing alphabetical list */
printf("\nCUSTOMERS LIST IN ALPHABETICAL ORDER \n\n");
for(i=0; i < CUSTOMERS ; i++)
printf(" %-20s\t %-10s\n", name[i], telephone[i]);
}

Input names and telephone numbers
?Gottfried Wilthelm Leibniz 711518
Joseph Louis Lagrange 869245

Jean Robert Argand 900823

Carl Freidrich Gauss 806788

Simon Denis Poisson 853240
Friedrich Wilhelm Bessel 719731
Charles Francois Sturm 222031
George Gabriel Stokes 545454
Mohandas Karamchand Gandhi 362718
Josian Willard Gibbs 123145

Argand,J.R 900823
Bessel,F.W 719731
Gandhi,M.K 362718
Gauss,C.F 806788
Gibbs,J.W 123145
Lagrange,J.L 869245
Leibniz,G.W 711518
Poisson,S.D 853240
Stokes,G.G 545454
Sturm,C.F 222031

Fig. 8.12 Program to alphabetize a customer list

REVIEW QUESTIONS

8.1 State whether the following statements are rue or false

(a) When initializing a string variable during its declaration, we must include the null char-

acter as part of the string constant, like “GOOD\0™.

(b) The gets function automatically appends the null character at the end of the string read

from the keyboard.

244] Programming in ANSIC

(¢) When reading a string with scanf, it automatically inserts the terminating null character.
(d) String variables cannot be used with the assignment operator.
(e) We cannot perform arithmetic operations on character variables.
(f) We can assign a character constant or a character variable to an int type variable.
(g) The function seanf cannot be used in any way to read a line of text with the white-spaces.
(h) The ASCII character set consists of 128 distinct characters.
(1) Inthe ASCII collating sequence, the uppercase letters precede lowercase letters.
(J) InC.itis illegal to mix character data with numeric data in arithmetic operations.
(k) The function getchar skips white-space during input.
(1) InC, strings cannot be initialized at run time.
(m) The input function gets has one string parameter.
(n) The function call strepy(s2, s1); copies string s2 into string s1.
(0) The function call stremp(**abc™, “ABC”); returns a positive number.
8.2 Fill in the blanks in the following statements.
(a) We can use the conversion specification in scanfto read a line of text.
(b) We can initialize a string using the string manipulation function o
(c) The function strncathas __ parameters.
(d) To use the function atoi in a program, we must inctude the header file L
(e) Thefunction doesnotrequire any conversion specification to read a string from
the keyboard.
(f) The function s used to determine the length of a string.
(g) The string manipulation function determines if a character is contained in a
string.
(h) The function ___ 1s used to sort the strings in alphabetical order.
(i) The function call strcat (s2, s1); appends _ to
(J) The printf may be replaced by function for printing strings.
8.3 Describe the limitations of using getchar and scanf functions for reading strings.
8.4 Character strings in C are automatically terminated by the nul// character. Explain how this
feature helps in string manipulations.
8.5 Strings can be assigned values as follows:

(a) During type declaration char string[] = {"....... "}s
(b) Usingstrcpy function strcpy(string, "....... ");
(c) Reading usingscanf function scanf("%s", string);

(d) Reading using gets function gets(string);

Compare them critically and describe situations where one is superior to the others.
8.6 Assuming the variable string contains the value “The sky is the limit.”, determine what output
of the following program segments will be.
(a) printf("%s", string);
(b) printf("%25.10s", string);
(c) printf("%s", string[0]);
(d) for (i=0; string[i] != "."; i++)
printf("%c", string[i]);
(e) for (i=0; string[i] != '\0'; i++;)

8.7

8.8

8.9

8.10

Character Arrays and Strings |245

printf("%d\n", string[i]);
(f) for (i=0; i <= strien[string]; ;)
{
string[i++] = i,
printf("%s\n", string[i]);
}
(g) printf("%c\n", string[10] + 5);
(h) printf(“%c\n", string[10] + 5')
Which of the following statements will correctly store the concatenation of stringss1 and s2 in
string s3?
(a) s3 = strcat (sl, s2);

(b) strcat (s1, s2, s3);
(c) strcat (s3, s2, sl);
(d) strcpy (s3, strcat (s1, s2));
(e) strcmp (s3, strcat (sl, s2));

(f) strcpy (strcat (sl, s2), s3);
What will be the output of the following statement?
printf ("%d", strcmp ("push", "pull"));
Assume that s1, s2 and s3 are declared as follows:
char s1[10] = "he", s2[20] = "she", s3[30], s4[30];
What will be the output of the following statements executed in sequence.
printf("%s", strcpy(s3, sl1));
printf("%s", strcat(strcat(strcpy(s4, sl), "or"), s2));
printf("%d %d", strlen(s2)+strien(s3), strlen(s4));
Find errors. if any, in the following code segments;
(a) char str[10]
strncpy(str, "GOD", 3);
printf("%s", str);
(b) char str[10];
strcpy(str, "Balagurusamy");
(¢) if strstr("Balagurusamy", "guru") == 0);
printf("Substring is found");
(d) char s1[5], s2[10],
gets(sl, s2);

PROGRAMMING EXERCISES

8.1

Write a program, which reads your name from the keyboard and outputs a list of ASCII codes,
which represent your name.

2 Write a program to do the following:

(a) To output the question “Who is the inventor of C ?7

(b) Toaccept an answer.

(¢) To print out “Good™ and then stop, if the answer is correct.
(d) To output the message ‘try again’, if the answer is wrong.

246 |

8.3

8.4
8.5
8.6

8.7

8.8

8.9

810

Programming in ANSI C

(e) To display the correct answer when the answer is wrong even at the third attempt and
stop.

Write a program to extract a portion of a character string and print the extracted string. As-

sume that m characters are extracted, starting with the nth character.

Write a program which will read a text and count all occurrences of a particular word.

Write a program which will read a string and rewrite it in the alphabetical order. For example,

the word STRING should be written as GINRST.

Write a program to replace a particular word by another word in a given string. For example,

the word “PASCAL” should be replaced by “C” in the text “It is good to program in PASCAL

language.”

A Maruti car dealer maintains a record of sales of various vehicles in the following form:
Vehicle type Month of sales Price
MARUTI-800 02/01 210000
MARUTI-DX 07/01 265000
GYPSY 04/02 315750
MARUTI-VAN 08/02 240000

Write a program to read this data into a table of strings and output the details of a particular
vehicle sold during a specified period. The program should request the user to input the ve-
hicle type and the period (starting month, ending month).
Write a program that reads a string from the keyboard and determines whether the string is a
palindrome or not. (A string is a palindrome if it can be read from left and right with the same
meaning. For example, Madam and Anna are palindrome strings. Ignore capitalization).
Write program that reads the cost of an item in the form RRRR.PP (Where RRRR denotes
Rupees and PP denotes Paise) and converts the value to a string of words that expresses the
numeric value in words. For example, if we input 125.75, the output should be “ONE HUN-
DRED TWENTY FIVE AND PAISE SEVENTY FIVE™.
Develop a program that will read and store the details of a list of students in the format

Roll No. Name Marks obtained

and produce the following output lits:

(a) Alphabetical list of names, roll numbers and marks obtained.
(b) Listsorted on roll numbers.

(c) List sorted on marks (rank-wise list)

“

Chapter

User-Defined Functions

9.1 INTRODUCTION

We have mentioned earlier that one of the strengths ot C language is that C functions are easy to
define and use. We have used functions in every program that we have discussed so far. However.
they have been primarily limited to the three functions, namely. main, printf, and scanf. In this
chapter, we shall consider in detail how a function is designed, how two or more functions are put
together and how they communicate with one another.

C functions can be classified into two categories, namely, library functions and user-defined func-
tions. main is an example of user-defined functions. printf and scanf belong to the category of
library functions. We have also used other library functions such as sqrt, cos, strecat, etc. The main
distinction between these two categories is that library functions are not required to be written by us
whereas a user-defined function has to be developed by the user at the time of writing a program.
However, a user-defined function can later become a part of the C program library. In fact, this is one
of the strengths of C language.

9.2 NEED FOR USER-DEFINED FUNCTIONS

As pointed out earlier, main is a specially recognized function in C. Every program must have a
main function to indicate where the program has to begin its execution. While it is possible to code
any program utilizing only main function, it leads to a number of problems. The program may
become too large and complex and as a result the task of debugging, testing, and maintaining
becomes difficult. If a program is divided into functional parts, then each part may be independ-
ently coded and later combined into a single unit. These subprograms called ‘functions’ are much
easier to understand, debug, and test.

248| Programming in ANSI C

There are times when certain type of operations or calculations is repeated at many points through-
out a program. For instance. we might use the factorial of a number at several points in the program,
In such situations, we may repeat the program statements wherever they are needed. Another ap-
proach is to design a function that can be called and used whenever required. This saves both time
and space.

This “division™ approach clearly results in a number of advantages.

1. It facilitates top-down modular programming as shown in Fig. 9.1. In this programming
style, the high level logic of the overall problem is solved first while the details of each
lower-level function are addressed later.

2. The length of a source program can be reduced by using functions at appropriate places.
This factor is particularly critical with microcomputers where memory space is limited.

3. Itis easy to locate and isolate a faulty function for further investigations.

4. A function may be used by many other programs. This means that a C programmer can build
on what others have already done. instead of starting all over again from scratch.

Main Program]

——— S S —

i l -
Function Function Function
A B C
1 ™ e e - L d

B1 B2

Fig. 9.1 Top-down modular programming using functions

9.3 A MULTI-FUNCTION PROGRAM

A function is a self-contained block of code that performs a particular task. Once a function has been
designed and packed, it can be treated as a ‘black box" that takes some data from the main program
and returns a value. The inner details of operation are invisible to the rest of the program. All that the
program knows about a function is: What goes in and what comes out. Every C program can be
designed using a collection of these black boxes known as functions.
Consider a set of statements as shown below:

void printline(void)

{
int i;
for (i=1; i<40; i++)
printf("-");

printf{"\n");
}

User-Defined Functions |249

The above set of statements defines a function calied printline, which could print a line of 39-char-
acter length. This function can be used in a program as follows:

void printline(void); /* declaration */
main()
{
printline();
printf("This illustrates the use of C functions\n");
printline();
}
void printline(void)
{
int i,
for(i=1; 1<40; i++)
printf("-");
printf("\n");
}

This program will print the following output:

This illustrates the use of C functions

The above program contains two user-defined functions:

main() function

printline() function
As we know, the program execution always begins with the main function. During execution of the
main, the first statement encountered is

printline();

which indicates that the function printline is to be executed. At this point. the program control is
transferred to the function printline. After executing the printline function, which outputs a line of
39 character length, the control is transferred back to the main. Now, the execution continues at the
point where the function call was executed. After executing the printf statement. the control is again
transferred to the printline function for printing the line once more.

The main function calls the user-defined printline function two times and the library function
printfonce. We may notice that the printline function itself calls the library function printf 39 times
repeatedly.

Any function can call any other function. In fact, it can call itself. A ‘called function’ can also call
another function. A function can be called more than once. In fact, this is one of the main features of
using functions. Figure 9.2 illustrates the flow of control in a multi-function program.

Except the starting point, there are no other predetermined relationships. rules of precedence. or
hierarchies among the functions that make up a complete program. The functions can be placed in any
order. A called function can be placed either before or after the calling tunction. However, it is the
usual practice to put all the called functions at the end. See the box “Modular Programming”

250| Programming in ANSI C

’ Main () |

T function1(); e b

— . |
SRR S function 2(); S E

|
|
I function 1(); S
|
.) - i
|

[e — —

function1();

% e |
‘ 1 ‘ — |
I P ; !
! |

function2(); I el :
1 [S |

R function3(); B T,

i U S U |

| i
I function3(); -~
| [i

< i
{ I
i

I

SRS S

Fig. 9.2 Flow of control in a multi-function program

